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Abstract

This paper investigates numerically the modal properties of damped 2-degree-of-freedom (d.o.f.)
representations of crowd-occupied civil engineering structures, such as grandstands. In particular, it
attempts to explain observations of some curious changes in natural frequencies and damping in
measurements made by other researchers in the past when such structures were occupied compared with
when they were empty. Natural frequencies, mode shapes, modal masses and damping ratios are examined
parametrically for a range of ratios of frequency, mass and damping coefficients of two single-d.o.f. systems
connected in series representing the ‘human’ and ‘structural’ vibration behaviour. It is found that a damped
2-d.o.f. model of a crowd–structure system can explain (1) damping increases, (2) additional modes of
vibration and (3) increases as well as decreases of natural frequencies observed on real-life grandstand
structures due to crowd occupation. Therefore, a mathematical framework for simplified dynamic response
analysis of assembly structures based on equivalent 2-d.o.f. dynamic modelling of crowd–structure
interaction may be a prudent way forward.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Crowd–structure dynamic interaction [1–3] is currently a major issue in the safety and
serviceability of civil engineering assembly structures [4,5]. It is now well established that crowds
not only induce significant dynamic forces, but also alter the dynamic properties of the occupied
structure. Consequently, there are two questions related to the crowd–structure dynamic
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interaction:

1. what are the dynamic forces applied by a crowd of people, and
2. what are the effects of a crowd on the dynamic properties (natural frequencies, modal mass,
modal stiffness and damping) of the structure it occupies.

This paper deals with the latter issue only. This issue is particularly important in the case of
structures, such as grandstands, where crowds can cause significant changes of the properties of
vertical and horizontal modes of vibration [1]. Occupants often, but not always, reduce natural
frequencies of civil engineering structures [1–3]. Most remarkably, in one case it was reported that
they reduced the natural frequency of the fundamental vertical mode of a relatively light
temporary grandstand from about 16 Hz to about 5 Hz [2]. However, crowds also have the
potential to increase existing natural frequencies and even create new modes of vibration [1,2].
Furthermore, it is widely acknowledged that human occupants increase damping of civil
engineering structures. A mathematical framework which would explain analytically all these
experimental observations is, unfortunately, quite weak and inconsistent in the published
literature. Therefore, the aim of this paper is to formulate a consistent but simple methodology for
interpreting and modelling the effects of human–structure dynamic interaction on assembly
structures.
Currently, it is common in civil engineering design practice to model human occupants just as

additional mass. This can be represented as a rigid mass mH added to the mass mS of a s.d.o.f.
system (Fig. 1a), which represents the relevant mode of vibration of an empty civil engineering
assembly structure. This simple way of modelling humans can explain observed decreases of
natural frequencies, but not increases, or the appearance of additional natural frequencies. This
insufficiency has led to the proposal of a single-degrees-of-freedom (s.d.o.f.) occupant model
defined not only by a lumped mass mH but also by a stiffness kH [2]. Combining this undamped
s.d.o.f. occupant model with an undamped s.d.o.f. model of an empty structure leads to the
human–structure model shown in Fig. 1b [2]. This model principally explains increases and
decreases of natural frequencies as well as additional modes [2]. However, it has no damping
capabilities associated with the structural and human d.o.f.s ðcH ¼ cS ¼ 0Þ: Therefore, it is
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Fig. 1. Models of human-occupied structures. (a) Mass-only model; (b) undamped 2-d.o.f. model; (c) damped 2-d.o.f.

model.
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difficult to use this model to explain the significant increase in damping observed in real life. For
example, in one case of a building floor with a fundamental natural frequency of 6:25 Hz; the
presence of one and two occupants increased the measured damping ratio from 0.55% to 1.4%
and 2.25%, respectively [6].
The human body is heavily damped [7] and, depending on the circumstances, it has the

potential to affect the dynamic properties and responses of a human–structure system
significantly. A key problem here is to establish the conditions under which humans act most
effectively as an additional source of damping. This piece of information is currently missing in
the published literature on human–structure interaction. To address this issue viscous dashpots cS

and cH representing the damping capabilities of the empty structure and human occupants,
respectively, may be added to the existing undamped human–structure model (Fig. 1b). This
modification leads to the damped 2-d.o.f. human–structure model (Fig. 1c) that is investigated in
this paper.
Attaching a damped (or undamped) s.d.o.f. crowd model to a structure model is some-

what similar to attaching a tuned mass damper (TMD) [8]. TMDs have been researched
extensively [9] and are widely employed to reduce vibrations of mechanical and civil engineer-
ing structures [10]. They usually have a mass significantly smaller than the modal mass mS

of the structural mode they are designed to dampen. Furthermore, the natural frequency
of a TMD is designed to be close to the natural frequency of the mode the TMD is
dampening.
In contrast to manufactured TMDs, the properties of humans as ‘TMDs’ are impossible to

control and, therefore, some important differences exist. Firstly, the mass of a crowd on a civil
engineering structure ðmHÞ can be similar to the mass of the structure itself ðmSÞ [8]. Also, the
(undamped) natural frequencies fH and fS of crowd and structure s.d.o.f. models, respectively,
given by

fH ¼
1

2p

ffiffiffiffiffiffiffi
kH

mH

s
; ð1Þ

fS ¼
1

2p

ffiffiffiffiffiffiffi
kS

mS

s
ð2Þ

can be very different. Therefore, the extensive literature on TMDs is of limited use in
understanding the possible behaviour of a 2-d.o.f. crowd–structure dynamic system. As there is a
lack of published literature on the general behaviour of 2-d.o.f. systems consisting of one lightly
and one heavily damped s.d.o.f. system connected in series, this paper contains a theoretical study
of such systems.
First, the theory of damped 2-d.o.f. crowd–structure systems is outlined and possible properties

systems are specified. Next, a parametric study of natural frequencies, mode shapes, modal masses
and damping ratios of damped 2-d.o.f. crowd–structure systems is presented. Finally,
representative frequency response functions (FRFs) are calculated and used to explain some of
the effects of human occupants on civil engineering structures observed and reported in the
literature.
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2. Damped 2-d.o.f. crowd–structure systems

Modelling a crowd-occupied structure using a damped 2-d.o.f. model (Fig. 1c) is only valid if
the structure and occupying crowds can both be modelled separately as damped s.d.o.f. systems.
This simplification implies that occupants and the structure are linear and time-invariant dynamic
systems. This assumption is generally valid for civil engineering structures under low levels of
vibration and is thought to be true if occupants are stationary and in continuous contact with the
structure. In this case, the modal properties of crowd–structure systems can be estimated using the
well-known theory of analytical modal analysis [11].

2.1. Estimation of modal properties

The equation of free vibration of a general viscously damped 2-d.o.f. model, as shown in
Fig. 1c, is

mS 0

0 mH

" #
.xSðtÞ

.xHðtÞ

( )
þ

cS þ cH �cH

�cH cH

" #
’xSðtÞ

’xHðtÞ

( )
þ

kS þ kH �kH

�kH kH

" #
xSðtÞ

xHðtÞ

( )
¼

0

0

( )
: ð3Þ

Solving the corresponding non-proportionally damped eigenproblem:

l2r
mS 0

0 mH

" #
þ lr

cS þ cH �cH

�cH cH

" #
þ

kS þ kH �kH

�kH kH

" # !
cSr

cHr

( )
¼

0

0

( )
ð4Þ

leads to two modes of vibration ðr ¼ 1; 2Þ: Each mode is defined by its complex eigenvalue lr and
mode shape fCgr; which is also complex. These two key modal properties have been calculated
numerically and are used in the parametric studies presented later in this paper.
Eigenvalues l1 and l2 define the (damped) natural frequencies f1 and f2:

fr ¼
1

2p
jlrj ðr ¼ 1; 2Þ ð5Þ

and the damping ratios z1 and z2:

zr ¼
�ReðlrÞ

jlrj
ðr ¼ 1; 2Þ ð6Þ

of the damped 2-d.o.f. dynamic model.
Both properties (natural frequencies and damping ratios) are considered in the following

parametric study. Additionally, the generally complex mode shapes fwg1 and fwg2 of the damped
2-d.o.f. crowd–structure model are presented in unity-normalized form, which means that the
‘maximum value’ is 1þ 0i: Such unity-normalized mode shapes are used to calculate the modal
masses m1 and m2 using the following equation [11]:

cS

cH

( )T
r

mS 0

0 mH

" #
	

cS

cH

( )�
r

¼ mr ðr ¼ 1; 2Þ: ð7Þ
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2.2. Definition and range of parameters

In this paper, four parameters are used to define a range of damped 2-d.o.f. crowd–structure
models, which are reasonably expected to occur in practice. The parameters are:

(1) the mass ratio a

a ¼
mH

mS

; ð8Þ

(2) the frequency ratio fH=fS

fH

fS

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kH

mH

mS

kS

s
; ð9Þ

(3) the damping ratio zS of the s.d.o.f. structure model

zS ¼
cS

4pmSfS

; ð10Þ

and
(4) the damping ratio zH of the s.d.o.f. human model

zH ¼
cH

4pmHfH

: ð11Þ

Grandstands and floors with natural frequencies below 6 Hz are of particular concern in the design
of civil engineering structures for vibration serviceability [5]. Their mass per square meter can easily be
as little as 500 kg=m2; or even less for composite steel–concrete constructions. Crowd densities of 6 or
more people/m2 are possible and have been observed during sports and concert events. Therefore,
mass ratios a of 10%, 50% and 100% are quite realistic and have been used in this paper.
The human body is a complex non-linear dynamic system. Its dynamic properties depend on

posture, the level of vibration and many other parameters. Reported natural frequencies fH of the
whole human body range from 1 Hz [12] to 16 Hz [13]. In biomechanics, natural frequencies of about
1–3 Hz and natural frequencies of 4–6 Hz are associated with horizontal and vertical vibrations of the
sitting human body [7,12], respectively. These values correspond to levels of vibration of 0.5–2:5 m=s2:
Levels of vibration encountered in civil engineering are typically lower than 0:5 m=s2: Therefore,
higher natural frequencies fH are likely in civil engineering applications because the human body tends
to stiffen with decreasing level of vibration [7]. For illustration purposes, natural frequencies fH of 5
and 6 Hz are repeatedly used in the following parametric studies. Note also that higher natural
frequencies fH can be expected for standing than for sitting people.
Natural frequencies fS of civil engineering structures experiencing serviceability problems

caused by human-induced resonant vibrations range from 0:5 Hz [14] to about 10 Hz:
Considering the whole range of reported natural frequencies fH of the whole human body,
frequency ratios fH=fS ranging from 0.1 (1/10) to 32 (16/0.5) are to be expected. However, the
studies presented in this paper concentrate on frequency ratios fH=fS from close to 0 to 15Hz, as
this range was considered to be most realistic and relevant.
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Empty civil engineering structures such as floors and grandstands typically have damping ratios
of 1–2% [15]. At the design stage, damping cannot be predicted easily and, therefore, it is
conservative to assume a low value. Therefore, a damping ratio zS of 1% is used in this paper.
However, significantly higher damping ratios are quoted for the human body in biomechanical

research [7]. They typically range from 30% to 50%. Both limiting values are used in this paper
for the damping ratio zH of a s.d.o.f. crowd model.

3. Parametric study of modal properties

Using the four parameters a; fH=fS; zS and zH specified above, the modal properties of damped
2-d.o.f. crowd–structure systems (Fig. 1c) are investigated parametrically. This leads to various
sets of natural frequencies f1 and f2; mode shapes fwg1 and fwg2; modal masses m1 and m2; and
modal damping ratios z1 and z2 that are presented in this section.

3.1. Natural frequencies

For three different mass ratios a; Figs. 2 and 3, respectively, present the first and second natural
frequencies f1 and f2 of damped 2-d.o.f. crowd–structure systems where zH ¼ 30%: These two
frequencies are presented normalized to the natural frequency fS of the s.d.o.f. empty structure
model. Almost identical graphs can be obtained for zH ¼ 50% indicating that increasing human
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Fig. 2. Normalized natural frequencies f1=fS of a damped 2-d.o.f. crowd–structure model ðzS ¼ 1%Þ:~~; a ¼ 10%;—,
a ¼ 50%; ��; a ¼ 100% for zH ¼ 30%:

Fig. 3. Normalized natural frequencies f2=fS of a damped 2-d.o.f. crowd–structure model ðzS ¼ 1%Þ: BB; a ¼ 10%;
—, a ¼ 50%; ��; a ¼ 100% for zH ¼ 30%:
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damping ratio from zH ¼ 30% to 50% has little effect on changing the natural frequencies f1 and
f2 corresponding to these two high damping values.
Fig. 2 also shows that the higher the natural frequency fH of the human d.o.f. with respect to

the natural frequency fS of the structure, the more the human d.o.f. acts as an additional rigid
mass attached to the structure, which corresponds to the mass-only model (Fig. 1a), as would be
expected. This is to be expected as it can be shown that when fH-N; the fundamental frequency
f1 of the 2-d.o.f. system becomes:

f1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

1þ a

r
fS: ð12Þ

The natural frequency f1 of the joint human–structure dynamic system is close to this upper
limit if fH=fS > 5 (Fig. 2), which is the case for a structure with a natural frequency of, say,
fSo1 Hz assuming fH ¼ 5 Hz: It is interesting to note in Fig. 3 that the natural frequency f2 is in
this case an approximately linear function of the ratio fH=fS:
Often, the natural frequency of vertical modes of civil engineering assembly structures is about

5 Hz: Thus, it is similar to the natural frequency of vertical vibrations of a sitting person.
Therefore, damped 2-d.o.f. crowd–structure models are likely to have frequency ratios fH=fS of
about 1. The natural frequencies f1 and f2 of such systems are not very clear in Figs. 2 and 3.
Therefore, normalized natural frequencies f1=fS and f2=fS of crowd–structure systems
characterized by frequency ratios fH=fS within the range from 0.25 to 1.25 are presented in
Figs. 4a and b for zH ¼ 30% and 50%, respectively.
A damped 2-d.o.f. crowd–structure model defined by fS ¼ 16 Hz and fH ¼ 5 Hz has a

frequency ratio fH=fS of about 0.3. The natural frequency f2 of this system is similar to the natural
frequency fS of the empty structure for both values of zH (Fig. 4). More importantly, the
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(a)

(b)

Fig. 4. Normalized natural frequencies f1=fS and f2=fS of a damped 2-d.o.f. crowd–structure model ðzS ¼ 1%Þ: f1=fS :
~~; a ¼ 10%; —, a ¼ 50%; ��; a ¼ 100%: f2=fS : BB; a ¼ 10%; —, a ¼ 50%; y; a ¼ 100%:
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fundamental frequency f1 of the crowd–structure model is slightly less than 5 Hz: Thus, such a
damped 2-d.o.f. model of a crowd-occupied structure explains the significant reduction of the
fundamental frequency of an assembly structure observed by Ellis and Ji [2] mentioned at the
beginning of the paper.
Fig. 2 demonstrates that the fundamental frequency f1 of all investigated crowd–structure

models is smaller than the natural frequency fS of the corresponding structure. However, it is
important to realise that the vibration responses of an occupied structure can be affected
significantly and even be dominated by the second mode of the crowd–structure system.
Both modes of crowd–structure systems were identified by Ellis and Ji [2] on a real-life

grandstand. Based on their experimental data (Table 1) and using an undamped 2-d.o.f. crowd–
structure model (Fig. 1b), they estimated the natural frequency fH to be between 5.5 and 5:8 Hz by
back analysis. In another real-life civil engineering structure, standing occupants were found to
increase the natural frequency of a horizontal mode from 3.05 to 3:30 Hz [1]. Interestingly, the
natural frequency decreased to 1:71 Hz if the occupants were sitting. The changes of this and
other modes (Table 2) demonstrate the influence of posture and direction of vibration on fH :
These observations emphasise that it is important for accurate occupant models to be used.
The question arises as to when and why only the first, the second, or both modes of the 2-d.o.f.

crowd–structure system affect the vibrations of the occupied structure. This will become clear in
Section 3.2 of this paper that presents mode shapes.
Before this, it should be noted that the natural frequencies f1 and f2 of a damped 2-d.o.f. crowd–

structure system can be practically identical (Fig. 4b). This happens when fH=fS ¼ 0:9; i.e., when,
say, zH ¼ 50%; a ¼ 10%; fH ¼ 6 Hz and fS ¼ 6:7 Hz: In such a case, it is likely that an analysis of
experimental data would identify only one and not two modes. This might have been the case
when 400 people occupied a floor and reduced its fundamental frequency from 7.28 to 6:60 Hz [3].
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Table 1

Natural frequencies at Twickenham stadium [2]

Occupied structure

Frame structure fS f1 f2
(Hz) (Hz) (Hz)

Truss 5 8.55 5.44 8.72

Truss 9 7.32 5.41 7.91

Truss 11 7.24 5.13 7.89

Table 2

Natural frequencies of an assembly structure [1]

Occupied structure

Mode description fS Occupants sitting Occupants standing

(Hz) (Hz) (Hz)

Front-to-back mode 3.05 1.71 3.30

Side-to-side mode 3.66 1.83 3.54

Vertical mode 13.6 9.03 9.16
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Note also that natural frequencies f1 and f2 can, but do not have to, be within the range bound
by the natural frequencies fH and fS of the two subsystems. However, this is not the case for the
natural frequencies f

ðUMÞ
1;2 (UM stands for undamped model) of an undamped 2-d.o.f. crowd–

structure model:

f
ðUMÞ
1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fH

fS

þ 1

 �2

þa
fH

fS


 �2s
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fH

fS

� 1

 �2

þa
fH

fS


 �2s0
@

1
AfS

2
ð13Þ

that always have to satisfy the following condition:

f
ðUMÞ
1 oð fS fHÞof

ðUMÞ
2 ð14Þ

as demonstrated by Ellis and Ji [2]. Therefore, it is important to realise that damped and
undamped 2-d.o.f. human–structure dynamic models may have considerably different behaviour.

3.2. Mode shapes

Damping of a viscously damped 2-d.o.f. crowd–structure model is generally non-proportional
and, therefore, its mode shapes fwg1 and fwg2 are complex. Therefore, in this paper they are
represented by magnitudes jfwgrj and phases argðfwgrÞ: The mode shapes of 2-d.o.f. crowd–
structure models with damping ratios zS ¼ 1% and zH ¼ 30% are parametrically studied to
improve the understanding of modal masses and damping ratios.

3.2.1. Mode shape of the first mode
Magnitudes of the unity-normalized first mode at the human d.o.f. jwH1j and the structural

d.o.f. jwS1j are shown in Fig. 5a for a range of a and fH=fS ratios. Fig. 5b presents the absolute
values of the corresponding phase differences jargðwH1Þ � argðwS1Þj denoted as argfwg:
Fig. 5a demonstrates that the human d.o.f. experiences stronger movements in the first mode of

vibration than the structure for all investigated crowd–structure models. In other words:

jwS1jojwH1j: ð15Þ

For example, the structural movements of a 2-d.o.f. crowd–structure model based on a
structure with a natural frequency fS ¼ 16 Hz and assuming fH ¼ 5 Hz are close to 0 ð fH=fSo0:4
in Fig. 5a). Such a mode dominated by the human d.o.f. has a natural frequency f1 close to the
natural frequency fH of the s.d.o.f. crowd model (Fig. 4).
It can be seen in Fig. 5a that the lower the natural frequency fS of the empty civil engineering

structure and the more people on it (that is fH=fS and a both increasing), the stronger the
participation of the structure in the first mode of the 2-d.o.f. model. For fH=fS > 3; which
corresponds to, say, fH ¼ 6 Hz and fSo2 Hz; both d.o.f.s of the crowd–structure model move in
phase (Fig. 5b) with nearly the same amplitude (Fig. 5a). Such a 2-d.o.f. system behaves like a
s.d.o.f. system (Fig. 1a) and has a natural frequency f1 slightly below fS and the value which can
be approximated by Eq. (12).
Note that both the human and the structural d.o.f. tend to move almost in phase in the first mode

of the 2-d.o.f. crowd–structure system when fH=fS > 2: Phase differences jargðwH1Þ � argðwS1Þj are
less than 90
 in all cases considered (Fig. 5b). This indicates that some modeshape complexity is to be
expected, particularly when a ¼ 10% and fH=fS is slightly less than 1.0.
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3.2.2. Mode shape of the second mode

The mode shape amplitudes jwS2j and jwH2j as well as the phase difference jargðwH2Þ � argðwS2Þj
of the second mode of damped 2-d.o.f. crowd–structure models are presented in Fig. 6.
Fig. 6c demonstrates that the second mode generally has phase difference jargðwH2Þ � argðwS2Þj

greater than 90
: The structural and human d.o.f. move practically 180
 out of phase when
fH=fS > 2 (Fig. 6c). When this happens, the structural d.o.f. has lower amplitude than its human
counterpart when ao100%; as shown in Fig. 6a.
If the natural frequency fS of a vertical mode of an unoccupied civil engineering structure

exceeds 10 Hz; it can be expected that fH=fSo0:6: The second mode of such a crowd–structure
system is dominated by structural movements (Fig. 6) and its natural frequency f2 is, as mentioned
before, close to fS (Fig. 4). Thus, a surprising increase in the relatively high natural frequency of
an empty structure ( for which fS ¼ 18:7 Hz), noted by Ellis and Ji [2], can be expected if a person
is present on the structure.
Finally, note in Fig. 6a that mode shapes fwg2 of crowd–structure systems with frequency

ratios 0:6ofH=fSo1:5; which are likely to occur in real situation depend strongly on the mass
ratio a and the frequency ratio fH=fS: This affects the modal mass m2 as shown later.

3.3. Modal masses

Modal masses m1 and m2 of 2-d.o.f. crowd–structure systems have been calculated using unity-
normalized complex mode shapes (Eq. (7)). They are presented for crowd–structure systems with
frequency ratios fH=fSp5 in Fig. 7.

ARTICLE IN PRESS

(a)

(b)

Fig. 5. Mode shape fcg1 of 2-d.o.f. crowd–structure systems (zS ¼ 1%; zH ¼ 30%Þ: (a) Modulus, structural d.o.f.:
BB; a ¼ 10%; —, a ¼ 50%; ?; a ¼ 100%: Modulus, human d.o.f.: xxx for all a ¼ 10%; 50%; 100%: (b) Phase
difference. BB; a ¼ 10%; —, a ¼ 50%; ?; a ¼ 100%:
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3.3.1. Modal mass of the first mode
The human d.o.f. dominates the first mode (Fig. 5a). Therefore, the modal mass m1 comprises

mH plus a mode shape dependent contribution of mS (Fig. 7a). Consequently, the modal mass m1

has mH as the lowest and mH þ mS has the highest possible value. This will be explained here.
The lower limit of m1 corresponds to human occupation of high-frequency structures (Fig. 7a):

lim
fS-N

m1 ¼ mH ¼ amS; ð16Þ

whose first mode is practically a movement of the human d.o.f. only (Fig. 5a for low fH=fS ratios).
The human and the structural d.o.f. move together in case of civil engineering structures with

very low natural frequencies ð fS{fHÞ: In this case, the modal mass m1 approaches its upper limit
(Fig. 7a):

lim
fH-N

m1 ¼ mH þ mS ¼ ð1þ aÞmS: ð17Þ
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(a)

(b)

(c)

Fig. 6. Mode shape fcg2 of 2-d.o.f. crowd–structure systems (zS ¼ 1%; zH ¼ 30%). (a) Modulus jcS2j: (b) Modulus
jcH2j: (c) Phase difference jargðcH2Þ � argðcS2Þj: BB; a ¼ 10%; —, a ¼ 50%; ?; a ¼ 100%:
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3.3.2. Modal mass of the second mode

The modal mass m2 of the second mode (Fig. 7b) shows a more complicated dependence on
mass and frequency ratios a and fH=fS than m1 (Fig. 7a).
In the design of civil engineering structures against human-induced vibrations, damped 2-d.o.f.

models with frequency ratios fHEfS are of particular interest. Such systems, especially with fH

slightly lower than fS ð fH=fSo1Þ can be expected to be characterized by a complex second mode
(Fig. 6). This leads to modal masses m2 as high as the physical limit of ðmS þ mHÞ particularly for
smaller a ða ¼ 10% or 50%Þ (Fig. 7b).

3.4. Damping ratios

The modal damping ratios of damped 2-d.o.f. crowd–structure systems defined by zS ¼ 1% and
zH ¼ 30% or 50% are presented in Fig. 8. Firstly, the modal damping ratios z1 and z2 are
discussed. Then, cases when similar damping ratios z1 and z2 occur are considered.

3.4.1. Damping ratio of the first mode
As mentioned before, only the human d.o.f. is engaged in the first mode of 2-d.o.f. models

representing human occupation of very stiff civil engineering structures ( fS-N in Fig. 5).
Therefore, the damping ratio z1 of such systems corresponds to the high damping ratio zH of the
human s.d.o.f. model (Figs. 8a and b):

lim
fS-N

z1 ¼ zH : ð18Þ

However, if the structural frequency fSofH (that is fH=fS > 1), modal damping ratio of the first
mode is significantly less than the 30% or 50%, which are percentages associated with the human
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(a)

(b)

Fig. 7. Modal masses of 2-d.o.f. crowd–structure systems (zS ¼ 1%; zH ¼ 30%).BB; a ¼ 10%;—, a ¼ 50%; � � �;
a ¼ 100%:
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body (Fig. 8). This is because the human and the structural d.o.f. move in phase with
approximately the same mode shape amplitude (Fig. 5). Thereby, occupants act primarily as an
additional mass and the viscous dashpot cH of the s.d.o.f. structure model (Fig. 1c) is not engaged
significantly. Paradoxically, this configuration can actually lead to damping ratios z1 smaller than
damping of the empty structure zS ¼ 1%; regardless of whether zH ¼ 30% or 50% (Figs. 9a
and b). This situation may occur in the case of structures having natural frequencies fS below 2 Hz
assuming fH of about 6 Hz ð fH=fS > 3Þ: The effect is more pronounced for higher mass ratios a:
With regard to this, the authors are not aware of any publication reporting a reduction in
damping of a civil engineering structure caused by human occupants. However, this might be due
to the lack of good quality experimental data quantifying the effect of occupants on damping of
large structures with very low natural frequencies.
Although the damping ratio z1 can be smaller than zS; z1 is theoretically always higher than the

damping ratio of a human-occupied structure where occupants are represented by the mass-only
model (Fig. 1a). Nevertheless, z1 of the 2-d.o.f. crowd–structure model approaches the latter value
in case of very flexible structures (Fig. 9) when fH-N:

lim
fH-N

z1 ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p OzS: ð19Þ

Fig. 8 indicates that there are large variations in damping ratios z1 and z2 when fH=fS is lower
than approximately 1.5. Such systems correspond roughly to fSo10 Hz and represent realistic
cases of crowd-occupied civil engineering structures. Modal damping ratios z1 and z2 of such
systems, which cannot clearly be seen in Fig. 8, are presented in Fig. 10.
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(a)

(b)

Fig. 8. Damping ratios z1 and z2 of 2-d.o.f. crowd–structure systems ðzS ¼ 1%Þ for (a) zH ¼ 30% and (b) zH ¼ 50%: z1:
~~; a ¼ 10%; —, a ¼ 50%; y; a ¼ 100%: z2: BB; a ¼ 10%; —, a ¼ 50%; y; a ¼ 100%:
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Fig. 10a shows that lower damping ratio z1 corresponds to higher ratios fH=fS which happens in
the case of relatively low natural frequency fS: This is because with the increase of fH=fS the first
mode changes from engaging mainly the human d.o.f. to engaging the structural d.o.f. (Fig. 5)
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(b)

(a)

Fig. 9. Damping ratios z1 of a damped 2-d.o.f. crowd–structure model ðzS ¼ 1%Þ: (a) zH ¼ 30%; (b) zH ¼ 50%: BB;
a ¼ 10%; —, a ¼ 50%; y; a ¼ 100%:

(b)

(a)

Fig. 10. Damping ratios z1 and z2 of 2-d.o.f. crowd–structure systems ðzS ¼ 1%Þ: z1 : ~~; a ¼ 10%; —, a ¼ 50%; - -,
a ¼ 100%: z2 : BB; a ¼ 10%; —, a ¼ 50%; y; a ¼ 100%:
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that has less damping associated with it (zS ¼ 1% as opposed to zH ¼ 30%). For example, in the
case of a realistic crowd–structure system defined by: fH ¼ 5:1 Hz; fS ¼ 6 Hz; a ¼ 10% and zH ¼
50% ( fH=fS ¼ 0:85 in Fig. 10b), the damping ratio z1 is about 46%.
However, if fS is reduced to 5:3 Hz; for the same fH the damping ratio z1 would be only 6%

( fH=fS > 0:95). This happens when the natural frequencies f1 and f2 are close (Fig. 4b) and there is
strong interaction between the human and structural d.o.f.s.

3.4.2. Damping ratio of the second mode

Similarly to the damping ratio z1; the damping ratio z2 of 2-d.o.f. crowd–structure systems has
upper and lower limits (Fig. 8). Of particular interest is the lower limit of z2: It is reached if the
second mode is dominated by strong movements of the structure, which happens in the case of a
high-frequency structure when fH=fS is small.
Interestingly, the damping ratio z2 exceeds zH (30% or 50%) if fH > 2fS (Figs. 8a and b),

particularly if the structure is densely populated and, thus, the mass ratio a is high. However, such
highly damped second modes of occupied low-frequency civil engineering structures (where, say,
fSo3 Hz) are less relevant in the design of assembly structures against human-induced vibrations
than the lightly damped ðz1ozSÞ fundamental modes.

3.4.3. High damping ratios of crowd–structure systems
A particularly interesting aspect of this parametric study is that both modes of a 2-d.o.f.

crowd–structure system can be heavily damped at the same time. In fact, the damping ratios z1
and z2 can both exceed 10% (ten times the damping ratio zS of the empty structure)
simultaneously when 0:4ofH=fSo1 (see Fig. 10a for a ¼ 50%). Such cases correspond to close
natural frequencies f1 and f2; particularly if the mass of the occupants is small compared to that of
the structure (small mass ratio a). However, due to the close natural frequencies f1 and f2;
it is possible that modal testing of an occupied full-scale structure identifies only a single
mode, so experimental verification of this feature on, say, a real-life grandstand structure may be
difficult.

4. Discussion

The parametric study of natural frequencies, mode shapes, modal masses and damping ratios
has provided a valuable insight into the possible behaviour of damped 2-d.o.f. crowd–structure
systems. To facilitate a discussion of the effect of a damped s.d.o.f. occupant model on the
vibration behaviour of a damped s.d.o.f. model of a civil engineering structure, the analyzed
behaviour will be presented in the form of point-accelerance FRFs corresponding to the excitation
and response at the structural d.o.f. xS (Fig. 1c).
The point-accelerance FRF ASSð f Þ of a damped 2-d.o.f. crowd–structure model (Fig. 1) can be

calculated using the following closed form solution [16]:

ASSð f Þ ¼
�f 2ð�mHf 2 þ icHf þ kHÞ

½ðkS þ kH � mSf 2 þ iðcS þ cHÞf ÞðkH � mHf 2 þ icHf Þ � ðicHf þ kHÞ2�
: ð20Þ
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On the other hand, the point-accelerance FRF As:d :o:f :ð f Þ of the corresponding empty structure
s.d.o.f. model is defined by a well known formula [11]:

As:d:o:f :ð f Þ ¼
�f 2

ðkS � mSf 2 þ icSf Þ
: ð21Þ

Using ASSð f Þ of two realistic damped 2-d.o.f. crowd–structure models (Table 3), the influence
of occupants on the vibration behaviour of civil engineering assembly structures is analysed.
FRFs ASSð f Þ of both cases are presented in Fig. 11 by modulus and phase and as Nyquist plots in
Fig. 12. The latter presentation is particularly valuable to identify closely spaced and heavily
damped modes, which are likely in case of crowd–structure systems.
As noted before, it is widely reported that human-occupied structures have significantly higher

damping than empty civil engineering structures. This conclusion can also be drawn if modal
properties (and FRFs) of the crowd–structure models #1 and #2 are compared with those of the

ARTICLE IN PRESS

Fig. 11. Modulus and phase of point-accelerances ASSð f Þ in ðmm s�2Þ=N (mS ¼ 10; 000 kg; zS ¼ 1%; fH ¼ 6 Hz;
zH ¼ 30%; a ¼ 50%). - -, #1 ð fS ¼ 4 HzÞ; —, #2 ð fS ¼ 8 HzÞ:

Table 3

Modal properties of two damped 2-d.o.f. crowd–structure models ðmS ¼ 10; 000 kg; zS ¼ 1%; fH ¼ 6:0 Hz; zH ¼ 30%;
a ¼ 50%Þ

First mode Second mode

Model No. fS fH=fS f1 z1 f2 z2
(Hz) (dimensionless) (Hz) (%) (Hz) (%)

1 4.0 1.5 3.1 2.5 7.7 34.4

2 8.0 0.75 5.2 14.2 9.3 22.1
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s.d.o.f. model of the empty structure (Table 3). In fact, the peak magnitudes of the FRF jASSð f Þj
of both damped 2-d.o.f. crowd–structure models are only 1.1 and 0:2 ðmm s�2Þ=N; respectively
(Fig. 11), whereas their counterpart for the s.d.o.f. system is

jAs:d:o:f :ð fSÞj ¼
1

2zSmS

¼ 5 ðmm s�2Þ=N: ð22Þ

Hence, the same level of (near-) resonant excitation can lead to significantly higher responses of
the empty than of the crowd-occupied structure. In other words, a crowd can have a very
beneficial effect on reducing the excessive vibrations of the ‘empty’ structure, at least if occupants
are stationary and in continuous contact with the structure. However, as mentioned before,
crowds do not only increase damping but also have the potential to reduce natural frequencies
significantly. Such a reduction in natural frequencies is adverse because civil engineering
structures with lower natural frequencies are usually more likely to be excited by human-induced
forces [15]. Therefore, considering how dramatic the changes of modal properties can be, it is
becoming apparent how crucial it is to identify correctly the (relevant) modes of the crowd–
structure system when designing assembly structures against human-induced vibrations.
Adding a damped s.d.o.f. crowd model to any s.d.o.f. empty structure model (produced, say,

via a finite element modal analysis) will lead to an additional mode. However, an additional mode
is clearly visible in the FRF ASSð f Þ of the 2-d.o.f. crowd–structure model only if:

1. both modes contribute sufficiently to the movement of the structure xS; and
2. the natural frequencies of the two modes are well separated.

Conditions similar to those defining the crowd–structure model #1 (Table 3) would most likely
lead to the conclusion that human occupants reduced the natural frequency. This is because the
single sharp peak corresponding to the first mode occurs at a frequency about 1 Hz below the
frequency of the empty structure fS ¼ 4 Hz (Fig. 11). In this case, the contribution of the second
heavily damped mode at 7:7 Hz is very small (Fig. 12a) and; therefore, can easily be missed.
A frequency decrease, an additional mode and a frequency increase could all be deduced from

the crowd–structure model #2. This 2-d.o.f. system model has two considerably damped modes
(Table 3). They appear in the FRF ASSð f Þ as two blunt peaks at frequencies lower and higher,
respectively, than the natural frequencies fH ¼ 6 Hz and fS ¼ 8 Hz of the two s.d.o.f. subsystems
(Fig. 11). If both modes are identified, a reduction of the fundamental natural frequency
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(a) (b)

Fig. 12. Accelerances ASSð f Þ in ðmm s�2Þ=N as Nyquist plot ( frequency spacing 0:2 HzÞ; for: (a) model #1 and (b)
model #2.
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(corresponding to the additional mode) and an increase of a natural frequency could be
reported, depending on the exact situation and the corresponding strength of the two modes.
However, in this particular case, the contribution of the first mode is smaller than that of the
second mode (Figs. 11 and 12b). Therefore, it could be missed during the system identification,
particularly if a s.d.o.f.—and not a m.d.o.f.—based identification algorithm was used. In this
case, a frequency increase only would be identified. This, probably, led to quite a lot of confusion
in the past.
In general, if fS > fH (that is fH=fSo1 as in model #2), the presence of occupants most likely

leads to reports of increased natural frequencies and, possibly, additional (lower and heavily
damped) modes. Assuming that fH ranges from 4 to 6 Hz for vertical vibrations, this would be the
case for empty structures with vertical natural frequencies higher than, say, 6 Hz:
In contrast, occupants on structures with fSofH ð fH=fS > 1 as in model #1) reduce the

fundamental natural frequency of the structure. In other words, low fundamental natural
frequencies fS (say, below 4 Hz) have the potential to be further reduced by human occupants.
Such low-frequency civil engineering structures are susceptible to human-induced excitation,
and therefore have often been investigated. This explains why reports of reduced natural
frequencies are more widespread than reports of additional modes and/or frequency increases.
It also explains the widespread and long-lasting acceptance of the mass-only model of occupants
on civil engineering structures (Fig. 1a), which has a similar effect on the fundamental natural
frequencies.

5. Conclusion

Parametric studies performed in this paper have demonstrated that a damped 2-d.o.f. crowd–
structure dynamic model provides a good mathematical framework to explain the in situ vibration
behaviour of assembly structures, such as grandstands, occupied by crowds. It is essential that the
‘human’ d.o.f. is damped and connected to the grounded ‘structural’ d.o.f. (representing a relevant
mode of the empty structure) in series, as shown in Fig. 1c. By varying the parameters of such a 2-
d.o.f. crowd–structure model, it has been possible to simulate the reduction and the increase of the
fundamental natural frequency of the empty structure, as well as the appearance of an additional
mode of vibration. All these phenomena have been observed on assembly structures when people
were present.
The relationship between the natural frequencies and the mass and damping ratios of

the s.d.o.f. models of the empty structure and the occupying crowd determine which of these
three scenarios will occur. Overall, considering typical ranges of natural frequencies of
empty structures and human bodies, decreases in natural frequency and increases in modal
damping of the relevant mode(s) in the joint human–structure 2-d.o.f. system are the most
likely observations. Nevertheless, people on high-frequency structures can, under certain
circumstances, actually increase the relevant and observable natural frequency. In the
case of very low-frequency structures (when fH=fS > 3), damping as well as the natural frequency
of the relevant human–structure mode may be decreased below the values corresponding
to the empty structure, even if damping ratio zH of the human body s.d.o.f. is as large as 30%
or 50%.
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Unfortunately, mass, stiffness and damping properties of human bodies are difficult to
ascertain for design purposes because they depend strongly on what the crowd is doing.
Moreover, the natural frequency fH of the crowd-related d.o.f. is difficult to specify because it
depends on the posture of the members of the crowd, as well as on the direction and level of
vibration. Nevertheless, some general indications on possible crowd properties exist in the
published literature. A reasonable range of these can then be used in conjunction with the general
mathematical framework described in this paper to parametrically evaluate the likely vibration
behaviour of the joint crowd–structure system.
As described in the literature surveyed and further conclusively demonstrated in this paper, the

effects of a crowd on the modal properties of an assembly structure can be so significant that they
should not be neglected in the mathematical modelling and vibration serviceability design of
slender assembly structures.
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Appendix A. Nomenclature

a mass ratio
lr eigenvalue of mode r of a damped 2-d.o.f. system
fWgr mode shape of r of a damped 2-d.o.f. system
zr damping ratio of mode r of a damped 2-d.o.f. system
zH damping ratio of a s.d.o.f. human model
zS damping ratio of a s.d.o.f. structure model
As:d :o:f :ð f Þ accelerance of a damped s.d.o.f. structure model
ASSð f Þ point-accelerance at the structural d.o.f. of a damped 2-d.o.f. crowd–structure model
cH viscous damping of a s.d.o.f. human model
cS viscous damping of a s.d.o.f. structure model
fH natural frequency of a s.d.o.f. human model
fS natural frequency of a s.d.o.f. structure model
fr natural frequency of mode r of a damped 2-d.o.f. system
f ðUMÞ
r natural frequency of mode r of an undamped 2-d.o.f. system

kH stiffness of a s.d.o.f. human model
kS stiffness of a s.d.o.f. structure model
mH lumped mass of a s.d.o.f. human model
mS lumped mass of a s.d.o.f. structure model
mr modal mass of mode r of an undamped 2-d.o.f. system
xH displacement at the ‘human’ d.o.f. of a 2-d.o.f. crowd–structure model
xS displacement at the ‘structural’ d.o.f. of a 2-d.o.f. crowd–structure model
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